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ABSTRACT

In this paper we present our reimplementation of the Growing
Neural Gas Sonification [1] for interactive surfaces such as our t-
Desk [4] or touch-capable tablet PCs. Growing Neural Gas (GNG)
[3] is an undirected learning algorithm that incrementally ’grows’
a network graph into data distributions, revealing the data distri-
butions’ intrinsic dimensionality and aspects of its structure. The
GNG Sonification (GNGS) [1] provides a method to interactively
explore the GNG during the growing process, utilizing a Model-
Based Sonification (MBS) [2] to convey audible information about
the data distribution in addition to the visualization. The goal of
our reimplementation was to be able to rapidly grasp the struc-
ture of the sonified and visualized data, to give the user the ability
to conduct direct A/B comparisons between different (or similar)
clusters within a data distribution. The direct bi-manual interaction
as well as a simplified full-screen touchable user interface helps to
focus on the exploration of the GNG rather than the interaction
itself. We present and discuss different interaction metaphors for
the excitation of the model setup in this MBS.

1. INTRODUCTION

The Growing Neural Gas is an undirected graph of vertices called
neurons and connecting edges. The graph is adapted during train-
ing with a given dataset so that it represents the topological struc-
ture of the data distribution. For example, for two-dimensional
data distributions the graph grows into a triangle mesh whereas
three-dimensional regions will lead to interconnected tetrahedrons.
While the neural gas grows and until the maximum number of neu-
rons is reached, new neurons are inserted regularly at the place of
maximum error. Connections between neurons age or get rein-
forced and neurons are moved in data space to minimize the quan-
tization error with respect to the data. Fig. 1 shows an example
of a GNG that grows into a two-dimensional dataset, learning its
structure along the way. The small bright points show the underly-
ing data distribution, the bright rings represent the neurons of the
GNG and the lines between them are their connections. The line’s
thickness represents the age of the connection. The structure and
intrinsic dimensionality become visible, until later in the learning
process overfitting occurs and the structure diffuses again. Visu-
ally, this works very well only for two- and three-dimensional data.
But what about higher dimensional data distributions? Other than
projecting high-dimensional data into two- or three-dimensional
space or selectively showing only a few of the data’s dimensions,
we have no means to visually grasp dimensionality properties.

In the GNGS, the user can ’pick’ a neuron similar to pick-
ing a guitar string to induce an energy flow within the whole net-
work. This energy flow is sonified and simultaneously visualized
in the selected dimensions. The resulting sound is influenced by
the amount of energy within each neuron and the number of con-
nections it has to other neurons. This Model-Based Sonification,
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Figure 1: A GNG that grows into a tutorial data distribution. Using
two-dimensional input data, the user quickly learns how the sonifi-
cation correlates to the structure of the GNG. This knowledge can
then easily be applied on higher-dimensional data.

specified in detail in the next section, can help the user to better
understand higher-dimensional structures within the GNG than vi-
sualization alone because it conveys information from all available
dimensions. Using our naturally well trained sense of listening, we
are able to differentiate dimensionality structures.

2. GROWING NEURAL GAS SONIFICATION MODEL

A sonification model according to MBS [2] can be described by
the following categories:

Setup: In this model, the connections in the GNG network serve
as energy transducers between neurons. Each neuron emits
a tone, whose frequency is determined by the number of
connections emanating from it: for each connection, its fre-
quency is increased by 4/ 3L

Dynamics: Using the energy flow equation (1), the energy for
each neuron is calculated. It decays over time, depending
on parameters g and g (adaptable by the user) and the cur-
rent state of the GNG network. The energy of each neuron
determines the amplitude of its tone.

W= B~ Y 0 (Bu(t) — (1)
JEIN(1)

ey

The parameter g ascertains the exponential energy decay, ¢
determines the amount of energy that flows to every neigh-

Corresponding to a quart in musical terms
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boring neuron each step. E;(t) describes the energy of neu-
ron 4, Iy () is the set of neurons that are connected to neu-
ron ¢. The default values of g = 0.05 and ¢ = 0.02 lead
to a slow dispersion of the induced energy throughout the
network, yielding a clearly audible ’path’ through it. Before
the equilibrium state of silence is reached, the resulting tone
becomes a signature for the sonified part of the network, as
the energy is distributed near-uniformly among connected
subgraphs.

Link Variables: The sonification is the superimposed sound sig-
nal of all existing neurons. It consists of one tone per neu-
ron, with the pitch determined by the number of connec-
tions to other neurons and its amplitude determined by the
current energy level of the neuron.

Excitation: There are three main modes of operation. In the pick-
mode, the user induces energy into a neuron by picking it
like a string on the guitar. The amount of energy induced is
proportional to the distance the neuron is picked. The en-
ergy then propagates through the GNG, exciting other neu-
rons along the way, until equilibrium is reached eventually.
In the continuous excitation-mode, the energy level of the
nearest neuron to the current position of the touch is set to
constant 1 while the energy flow behavior is unchanged. As
this mode allows for continuous excitation, moving the fin-
ger around a set of neurons induces a high energy level in
each of them. This allows exciting a part of the network
quickly to hear its signature, or to quickly compare differ-
ent parts of the GNG. In the third mode, the GNG’s learn-
ing process is sonified: every neuron has a constant energy
level of 0.1 and thereby no energy flows. The stationary
sound is only influenced by sudden changes in the number
of neurons and their connections.

Listener: The resulting sonification for all neurons is presented
to the user as well as the synchronized visual feedback.
For two-dimensional data, the sonification directly matches
what the user can see on the screen. For higher dimensional
data, the sonification often reveals more than the user is able
to see at a time.

2.1. GNGS for interactive surfaces

Our application presents a 2D scatterplot of the data distribution to
the user. He or she can select scatterplot variables with controls on
the bottom-right for the x-axis and right-hand side for the y-axis.
There are three controls in the top row of the screen to adapt the
GNG algorithm:

e the maximum number of neurons for the GNG
e the maximum age of connections between neurons

o the learning rate parameter, e.g. speed of the learning pro-
cess

Sliders to control aspects of the sonification are in the lower right
corner:

o the energy flow rate parameter ¢ in eq. (1)
e the energy dissipation rate parameter g in eq. (1)

The four buttons in the upper right corner start or pause the learn-
ing process, reset to its initial state, allow panning of the viewport
and cycling through the different modes for the sonification. Ad-
ditionally, a slider allows to zoom the viewport to also support
single-touch devices.

Each neuron in the GNG is represented by a bright ring. If the
neuron has an energy level greater than zero, a filled circle appears
within it with it’s diameter proportional to the energy level. The
connections between the neurons are visualized by lines whose
thickness represents the edges age.
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Figure 2: The user interface of the GNG Sonification application,
showing the first two dimensions of the three cluster data distribu-
tion superimposed with a GNG during its adaption process.

2.2. Data distributions used for evaluation

To evaluate the GNGS, we devised several data distributions:

Three cluster distribution: containing 449 points in 8 dimensions,
organized in three clusters of differing intrinsic dimension-
ality: 2, 4 and 8 each.

Twisted snake distribution: containing 800 points in 10 dimen-
sions, a snake-like distribution when looked at in the first
two dimensions, but with higher intrinsic dimensionality
for each few hundred points resulting in a snake twisted
into high dimensional space.

Quiz distribution: containing 800 points in 10 dimensions similar
to the twisted snake, but the regions of different intrinsic di-
mensionality are spatially separated. There are two regions
of the same dimensionality that are not visually distinguish-
able. By exploring the GNGS, the user is able to hear which
regions are similar, hence the name of this data distribution.

2.3. Implementation Details

The GNG sonification is implemented in Python. Computation is
handled by the Modular toolkit for Data Processing [5]. The user
interface is implemented with PyMT - A Multi-touch UI Toolkit
for Pyglet [6]. The sonification has been implemented in Super-
Collider [7], utilizing Stinson’s OSC interface for Python [8] for
the interprocess communication.

2.4. Interaction

In this paper we mainly discuss exploring the three cluster dataset
with the GNGS, but audio and video interaction examples for the
other two datasets are provided on our website®.

While growing into the three cluster data distribution, the GNG
forms three separate networks. Fig. 3 shows snapshots of the learn-
ing process. This process is sonified, giving each existing neuron
an energy level of 0.1. In the first picture, two of the five neurons
have only one connection, resulting in a low frequency for these
two neurons. Their combined energy level is 0.2, so the ampli-
tude for this frequency is low as well. Three neurons have two
connections, assigning them a higher frequency one quart above

Zhttp://www.techfak.uni-bielefeld.de/ags/ami/publications/KTH2010-
GNG
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Figure 3: Learning-mode: every neuron in the GNG on top of the
three cluster dataset has an energy level of 0.1. The sound changes
instantly when a neuron is removed or added, or the number of
connections between them changes.
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Figure 4: Continuous-mode: the right cluster was circled, inducing
an energy level of 1 in each neuron within. Enables quick listening
to the signature sound of the cluster.

the other. Their energy level is 0.3, thus the amplitude is slightly
higher. The resulting sound thus has a low pitch and amplitude.
As more neurons appear with a higher number of connections dur-
ing the learning process (the following two pictures in fig. 3), the
sound becomes brighter and louder. The addition or removal of
neurons as well as connections are clearly audible through sudden
changes in pitch and/or amplitude of certain frequencies’.

In the continuous excitation mode, the GNG can be explored
after the learning process was stopped by the user. For as long as
his or her finger is on the surface, the nearest neuron has a con-
stant energy level of 1, inducing a steady flow of energy into the
network. With swirling motions around a region of interest, a sig-
nature sound for this region can be produced. Fig. 4 shows the re-
sult of swirling with a finger around the right network in the three
cluster distribution: all neurons within that network receive en-
ergy, and the resulting sound becomes the signature sound for this
network. When the finger is lifted from the surface, the sonifica-
tion immediately stops*. Using fast swirling or scribbling motions

3This can be heard in video example 1, available from our website
4Video example 2
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Figure 5: Pick-mode: Picking the leftmost neuron of the right clus-
ter of the three cluster dataset. The resulting sound is very bright,
as most neurons have many connections to other nodes, suggest-
ing a high intrinsic dimensionality. It changes its pitch while the
energy propagates through the neurons according to their number
of connections, slowly fading until equilibrium is reached.

subsequently in different parts of the GNG allows for rapid A/B
comparisons of the respective signature sounds, revealing struc-
tural differences or similarities.

Fig. 5 shows the picking mode. The user has picked the left-
most neuron of the right network, with the picking motion shown
as a white arrow. The resulting sound starts much brighter than one
would expect from looking at the two-dimensional scatter plot’, as
there are only four visible connections emanating from that neu-
ron. But this neuron is folded into other dimensions as well and
has connections to other neurons on nearly all eight dimensions,
resulting in a very bright sound. As the energy propagates, the
brightness gets a little lower while the volume slowly fades. As it
seems, the other neurons in that network are not as well connected
in the eight-dimensional space as the picked one.

Through changing the g and g parameters of the sonification,
the user is able to alter how the energy flows within a network:
g determines how fast the energy decays in neurons, ¢ influences
how fast the energy is transported along the edges. If enough en-
ergy is induced to spread throughout the whole network (e.g. the
picked distance is far enough or the g and q parameters are set ac-
cordingly), the signature sound for this network becomes audible,
similar to the swirling or scribbling motions in continuous mode.

Altering the maximum number of nodes or maximum age pa-
rameters, the GNG can be optimized to better learn a given data
distribution.

Growing Neural Gas is an undirected learning algorithm, but
there is no established decision criteria as to when it has fully
grown into its data distribution. Overfitting occurs after a while
and the learned structure becomes diffused again. The user has to
make an informed decision as to when to end the learning process.
The GNG Sonification Model provides a multi-modal and highly
interactive tool to do just that.

Since the GNGS is totally invariant upon the choice of coor-
dinate systems, the sonification allows an estimation of topology
even if structure can not be visually guessed, e.g. if the data dis-
tribution is a two-dimensional data sheet twisted into a higher-di-
mensional subspace. Furthermore, GNGS provides information
by sound that is complementary to the visually salient informa-
tion, namely the connectivity of the graph in a dynamic form.
GNGS provides thus interactive insight into relevant topological
structures of complex distributions.

5Video example 3



Proceedings of ISon 2010, 3"¢ Interactive Sonification Workshop, KTH, Stockholm, Sweden, April 7, 2010

3. DISCUSSION AND CONCLUSION

In this paper we have presented a reimplementation of the Growing
Neural Gas sonification model, exploring new interaction possibil-
ities with current interactive surfaces such as our tDesk, tabletop
PCs or convertible touch-screen notebooks. The application en-
ables different interaction modes: a) continuous excitation through
motions on the surface and b) picking, analogue to picking a string
on a guitar. There’s also a ¢) non-interactive monitoring mode
where the user just watches and listens to the GNG as it adapts its
structure to the data distribution.

The main advantage of our approach is that a very natural and
direct contact between the user and the explored data can be es-
tablished, as the user intuitively interacts and explores the GNG,
using the surface almost like a real, albeit two-dimensional, phys-
ical tool. The synchronization between the different components
is crucial to enable closed-loop interaction. From the moment the
user picks a neuron to the state of equilibrium silence, the visual-
ization and sonification have to be in sync. Even slight differences
among the representations can cause irritation and a loss of focus
for the user. For the future, we plan to extend the GNGS appli-
cation and our other Model-Based Sonifications with as-of-yet un-
touched aspects of continuous interaction with data distributions.
For example, enabling the user to continuously deform data repre-
sentations to perceive the resulting stress as informative sound.

In summary, the presented Growing Neural Gas Sonification
enriches the available modes to interact with complex data and
to perceive structure-related features as sound via MBS that can
otherwise not easily be perceived. The tight coupling of visualiza-
tion, sonification and the interactive surface in one interface con-
tributes to a multi-modal experience and shows the potential to an
increased level of understanding of structures in the data. In our
ongoing research we plan to explore and evaluate how multimodal
interaction modes as introduced here support the understanding of
complex data.
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